
EHUI: A Novel Algorithm for Mining High
Utility Itemsets

Prashant V. Barhate1, Prof. S. R. Chaudhari2, Prof. P. C. Gill3

1 Research Scholar, MIT, Aurangabad, Maharashtra, India.
2,3 Department of Computer Science & Engineering, MIT, Aurangabad, Maharashtra, India.

Abstract-High utility itemsets refer to the sets of items with
high utility like profit in a database, and efficient mining of
high utility itemsets plays an important role in many real life
applications and is an important research issue in data mining
area. In recent years, the problems of high utility pattern
mining become one of the most important research areas in
data mining. The existing high utility mining algorithm
generates large number of candidate itemsets, which takes
much time to find utility value of all candidate itemsets.
In this paper we are implementing a data structure that stores
the utility related to the item and using this data structure we
are reducing time and space complexity of UP Growth and UP
Growth+ Algorithms. Various Standard and synthetic datasets
are used with Educational real data set. An algorithm is
proposed to find set of high utility itemset which avoids the
candidate itemsets generation.

Keywords- Utility, Utility Information Record, Effective High
Utility Itemset Mining.

I. INTRODUCTION
Rapid development in database techniques facilitates
storage and usage of data from large database and also to
mine the same. How to obtain valuable information from
database is a more crucial task today which results in a rise
of research topics [1].
Mining frequent itemset [2] from the database DB is to find
out set of itemset that occurs frequently. The frequency of
itemset is the support count related to that itemset i.e.
number of transactions containing that itemset. If the
support of the itemset exceeds the minimum support
threshold value then itemset is frequent.
Mining frequent itemset on takes presence and absence of
itemset into account, other relative information related to
the item is not considered. This results in the research area
of finding out high utility itemset from database. Utility is
one of the important features of itemset in transaction that
specifies a utility/profit of itemset with frequency.
Recently, a number of high utility itemset mining
algorithms [3] have been proposed. Most of the algorithms
adopt a similar framework: firstly, generate candidate high
utility itemsets from a database secondly, compute the exact
utilities of the candidates by scanning the database to
identify high utility itemsets. However, the algorithms often
generate a very large number of candidate itemsets and thus
are confronted with two problems:
(1) Excessive memory requirement for storing candidate

itemsets.
(2) A large amount of running time for generating

candidates and computing their exact utilities.

TABLE I
PROFIT TABLE

TABLE II
 DATABASE EXAMPLE

TID Transaction Quantity TU
T1 {A,C,D,} {1,10,1} 17
T2 {A,C,E,G} {2,6,2,5} 27
T3 {A,B,D,E,F} {2,2,6,2,1} 37
T4 {B,C,D,E} {4,13,3,1} 30
T5 {B,C,E,G} { 2,4,1,2} 13
T6 {A,B,C,D,H} {1,1,1,1,2} 12

When the number of candidates is so large that they cannot
be stored in memory, the algorithms will fail or their
performance will be degraded due to thrashing. To solve
these problems, we propose in this paper an algorithm for
high utility itemset mining.
The contributions of the paper are as follows:
1. A novel structure, called utility information record, is

proposed. Utility information record stores not only the
utility information about an itemset but also the
heuristic information about whether the itemset should
be pruned or not.

2. An efficient algorithm, called Efficient High Utility
Itemset Mining (EHUIM) Algorithm, is developed.
Different from previous algorithms, EHUIM Algorithm
does not generate candidate high utility itemsets. After
constructing the initial utility-record from a mined
database, EHUIM Algorithm, can mine high utility
itemsets from these utility-record. We are using various
standard and real data sets [4].

II. BACKGROUND

A. Problem Definition
Let I={i1, i2, i3, . . . , in} be a set of items and DB be a
database composed of a utility table and a transaction table.
Each item in I has a utility value in the utility table. Each
transaction T in the transaction table has a unique
identifier(tid) and is a subset of I, in which each item is
associated with a count value. An itemset is a subset of I
and is called a k-itemset if it contains k items.
Definition 1. The external utility of item i, denoted as

ext_u(i), is the utility value of i in the utility
table of DB.

Item A B C D E F G H
Profit 5 2 1 2 3 5 1 1

Prashant V. Barhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3890-3892

www.ijcsit.com 3890

Definition 2. The internal utility of item i in transaction T,
denoted as int_u(i, T), is the count value
associated with i in T in the transaction table of
DB.

Definition 3. The utility of item i in transaction T, denoted
as u(i, T), is the product of int_u(i, T) and
ext_u(i), where u(i, T) = int_u(i, T) × ext_u(i).

For example, in Table 2 and 3, ext_u(e) = 3,
int_u(e, T5) = 1, and u(e,T5)= int_u(e, T5) ×
ext_u(e) = 1 x 3 =3.

Definition 4. The utility of itemset X in transaction T,
denoted as u(X, T), is the sum of the utilities of
all the items in X in T in which X is contained,
where u(X, T) =

Definition 5. The utility of itemset X, denoted as u(X),is the
sum of the utilities of X in all the transactions
containing X in DB, where u(X) =

For example, in Table 2, u({ae}, T2) = u(a, T2) +
u(e, T2)= 2 × 5 + 2 × 3 = 16, and u({ae}) =
u({ae}, T2) + u({ae},T5) = 16 + 14 = 30.

Definition 6. The utility of transaction T, denoted as tu(T),
is the sum of the utilities of all the items in T,
where tu(T) = , and the total utility

of DB is the sum of the utilities of all the
transactions in DB.

B. Related Work
Many algorithms have been proposed for high utility
itemset mining but all they first produce candidate itemset
which require more time and space. Here in this algorithm a
search space from the UP Growth algorithm [5] is
minimized. A Utility information record structure is used
instead of UP Tree.

III. PROPOSED METHOD

The framework of the proposed method consists of
following steps: 1) Scan database to construct utility
Information Record. 2) Apply EHUI mining algorithm. 3)
Generate High Utility Itemsets.
A. Utility Information Record Structure
In the section, we propose a utility information record
structure to maintain the utility information about a
database.
1) Initial Utility information record: Initial utility

information record storing the utility information about
a mined database can be constructed by two scans of
the database. Firstly, the transaction-weighted utilities
of all items are accumulated by a database scan. If the
transaction-weighted utility of an item is less than a
given minutil, the item is no longer considered. For the
items whose transaction-weighted utilities exceed the
minutil, they are sorted in transacion-weighted-utility-
ascending order.

2) Utility information record of 2-Itemsets: No need for
database scan, the utility information record of 2-
itemset{xy} can be constructed by the intersection of
the utility list of {x} and that of {y}. The algorithm
identifies common transactions by comparing the tids

in the two utility information record. Suppose the
lengths of the utility-lists are m and n respectively, and
then (m + n) comparisons at most are enough for
identifying common transactions, because all tids in a
utility information record are ordered. The
identification process is actually a 2-way comparison.

3) Utility information record of k-Itemsets (k≥3): To
construct the utility-list of k-itemset {i1 · · ·
i(k−1)ik}(k≥3), we can directly intersect the utility-list
of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as we do
to construct the utility-list of a 2-itemset.

Algorithm 1: Build - Tree Generation Algorithm

Input: P.UIR, the utility information record of itemset P;
Px.UIR, the utility information record of itemset Px;
Py.UIR, the utility information record of itemset Py.
Output: Pxy.UIR, the utility information record of itemset
Pxy.
1. Pxy.UIR = NULL;
2. for each element Ex ∈Px.UIR do
3. if ∃Ey∈Py.UIR and Ex.tid==Ey.tid then
4. if P.UIR is not empty then
5. search such element E∈P.UIR that

E.tid==Ex.tid;
6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil,

Ey.rutil>;
7. Else
8. Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>;
9. end if

10. append Exy to Pxy.UIR;
11. end if
12. end for
13. return Pxy.UIR;

B. EHUIM Algorithm
After constructing a Utility information record a EHUIM
Algorithm can mine all high utility itemset from database.
1) Domain Space: The domain space of the high utility

itemset mining problem can be represented as a
combination tree. Given a set of items I = {i1, i2, i3, . . .
in} and a total order on all items (suppose i1 < i2 < · · ·
< in), a combination tree representing all itemsets can
be constructed as follows.
Firstly, the root of the tree is created; secondly, then
child nodes of the root representing n 1-itemsets are
created, respectively; thirdly, for a node representing
itemset{is · · · ie} (1 ≤ s ≤ e < n), the (n−e) child nodes
of the node representing itemsets {is · · · iei(e+1) },{is · ·
· iei(e+2)}, ...,{is · · · iein} are created. The third step is
done repeatedly until all leaf nodes are created. For
example, given I = {e,c, b, a, d} and e < c < b < a < d, a
combination tree representing all itemsets of I is
depicted in Fig. 1.

2) Pruning Strategy: For a database with n items,
exhaustive search has to check 2n itemsets. To reduce
the search space, we can exploit the iutils and rutils in
the utility-list of an itemset. The sum of all the iutils in
the utility-list of an itemset is the utility of the itemset
according to Definition 5, and thus the itemset is high

Prashant V. Barhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3890-3892

www.ijcsit.com 3891

utility if the sum exceeds a given minutil. The sum of
all the iutils and rutils in the utility-list provides
EHUIM Algorithm with the key information about
whether the itemset should be pruned or not.
Lemma 1. Given the utility information record of
itemset X, if the sum of all the iutils and rutils in the
utility information record is less than a given "minutil",
any extension X' of X is not high utility.

3) EHUI Mining Algorithm: Algorithm 2 shows the
pseudo-code of EHUIM Algorithm. For each utility
information record X in ULs (the second parameter), if
the sum of all the iutils in X exceeds minutil, and then
the extension associated with X is high utility and
outputted. According to Lemma 1, only when the sum
of all the iutils and rutils in X exceeds minutil should it
be processed further. When the initial utility-lists are
constructed from a database, they are sorted and
processed in transaction-weighted utility-ascending
order. Therefore, all the utility information records in
UIRs are ordered as the initial utility information
record are. To explore the search space, the algorithm
intersects X and each utility information record Y after
X in UIRs. Suppose X is the utility-list of itemset Px
and Y that of itemset Py, and then Build(P.UIR, X, Y)
in line 8 is to construct the utility-list of itemset Pxy as
stated in Algorithm 1. Finally, the set of utility-lists of
all the 1-extensions of itemset Px is recursively
processed. Given a database and a minutil, after the
initial utility information record IUIRs are constructed,
EHUIM(∅, IUIRs, minutil) can mine all high utility
itemsets.

 Φ

 e c b a d

 ec eb ea ed cb ca cd ba bd ad

ecb eca ecd eba ebd ead cba cbd cad bad

ecba ecbd ecad ebad cbad

 ecbad
Figure 1: Combination Tree

Algorithm 2: EHUI Mining Algorithm

Input: P.UIR, the utility-list of itemset P, initially empty;
UIRs, the set of utility-lists of all P’s 1-extensions;
minutil, the minimum utility threshold.
Output: all the high utility itemsets with P as prefix.
1. for each utility information record X in UIRs do
2. if SUM(X.iutils)≥minutil then
3. output the extension associated with X;
4. end if
5. if SUM(X.iutils)+SUM(X.rutils)≥minutil

then
6. exULs = NULL;
7. for each utility information record Y after X in UIRs do
8. exUIRs = exUIRs+Build(P.UIR, X, Y);
9. end for

10. EHUI(X, exULs, minutil);
11. end if
12. end for

IV. CONCLUSION
In this paper, we have proposed a novel data structure,
utility information record, and developed an efficient
algorithm, EHUI, for high utility itemset mining. Utility
information record provides not only utility information
about itemsets but also important pruning information for
EHUI. We have used Educational real time and standard
datasets. Previous algorithms have to process a very large
number of candidate itemsets during their mining processes.
However, most candidate itemsets are not high utility and
are discarded finally. EHUI Algorithm can mine high utility
itemsets without candidate generation, so that complexity of
UPGrowth and UPGrowth+ is reduced as it require less
time and space, which avoids the costly generation and
utility computation of candidates. However in future we can
again reduce the complexity by reducing the joining cost of
utility information record.

REFERENCES
[1] Jyothi Pillai, O.P.Vyas “Overview of Itemset Utility Mining and its

Applications” IJCA(0975 – 8887) Volume 5– No.11, August 2010.
[2] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining:

Current status and future directions. Data Mining and Knowledge
Discovery, 15(1):55–86, 2007.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K.Lee. Efficient
tree structures for high utility patternmining in incremental databases.
IEEE Transactions onKnowledge and Data Engineering,
21(12):1708–1721,2009.

[4] Frequent Itemset Mining Implementations Repository,
http://fimi.cs.helsinki.fi/, 2013.

[5] Vincent S. Tseng, Bai-En Shie, Cheng Wei Wu, and Philip S. Yu,
Fellow, “Efficient Algorithms for Mining High Utility Itemsets from
Transactional Databases” IEEE Transactions On Knowledge And
Data Engineering, Vol. 25, No. 8, August 2013.

Prashant V. Barhate et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3890-3892

www.ijcsit.com 3892

