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Abstract-High utility itemsets refer to the sets of items with 
high utility like profit in a database, and efficient mining of 
high utility itemsets plays an important role in many real life 
applications and is an important research issue in data mining 
area. In recent years, the problems of high utility pattern 
mining become one of the most important research areas in 
data mining. The existing high utility mining algorithm 
generates large number of candidate itemsets, which takes 
much time to find utility value of all candidate itemsets. 
In this paper we are implementing a data structure that stores 
the utility related to the item and using this data structure we 
are reducing time and space complexity of UP Growth and UP 
Growth+ Algorithms. Various Standard and synthetic datasets 
are used with Educational real data set. An algorithm is 
proposed to find set of high utility itemset which avoids the 
candidate itemsets generation. 

Keywords- Utility, Utility Information Record, Effective High 
Utility Itemset Mining. 

I. INTRODUCTION 
Rapid development in database techniques facilitates 
storage and usage of data from large database and also to 
mine the same. How to obtain valuable information from 
database is a more crucial task today which results in a rise 
of research topics [1]. 
Mining frequent itemset [2] from the database DB is to find 
out set of itemset that occurs frequently. The frequency of 
itemset is the support count related to that itemset i.e. 
number of transactions containing that itemset. If the 
support of the itemset exceeds the minimum support 
threshold value then itemset is frequent.  
Mining frequent itemset on takes presence and absence of 
itemset into account, other relative information related to 
the item is not considered. This results in the research area 
of finding out high utility itemset from database. Utility is 
one of the important features of itemset in transaction that 
specifies a utility/profit of itemset with frequency. 
Recently, a number of high utility itemset mining 
algorithms [3] have been proposed. Most of the algorithms 
adopt a similar framework: firstly, generate candidate high 
utility itemsets from a database secondly, compute the exact 
utilities of the candidates by scanning the database to 
identify high utility itemsets. However, the algorithms often 
generate a very large number of candidate itemsets and thus 
are confronted with two problems:  
(1) Excessive memory requirement for storing candidate 

itemsets.  
(2) A large amount of running time for generating 

candidates and computing their exact utilities. 

TABLE I 
PROFIT TABLE 

TABLE II 
 DATABASE EXAMPLE 

TID Transaction Quantity TU 
T1 {A,C,D,} {1,10,1} 17 
T2 {A,C,E,G} {2,6,2,5} 27 
T3 {A,B,D,E,F} {2,2,6,2,1} 37 
T4 {B,C,D,E} {4,13,3,1} 30 
T5 {B,C,E,G} { 2,4,1,2} 13 
T6 {A,B,C,D,H} {1,1,1,1,2} 12 

When the number of candidates is so large that they cannot 
be stored in memory, the algorithms will fail or their 
performance will be degraded due to thrashing. To solve 
these problems, we propose in this paper an algorithm for 
high utility itemset mining. 
The contributions of the paper are as follows: 
1. A novel structure, called utility information record, is

proposed. Utility information record stores not only the
utility information about an itemset but also the
heuristic information about whether the itemset should
be pruned or not.

2. An efficient algorithm, called Efficient High Utility
Itemset Mining (EHUIM) Algorithm, is developed.
Different from previous algorithms, EHUIM Algorithm
does not generate candidate high utility itemsets. After
constructing the initial utility-record from a mined
database, EHUIM Algorithm, can mine high utility
itemsets from these utility-record. We are using various
standard and real data sets [4].

II. BACKGROUND

A.  Problem Definition 
Let I={i1, i2, i3, . . . , in} be a set of items and DB be a 
database composed of a utility table and a transaction table. 
Each item in I has a utility value in the utility table. Each 
transaction T in the transaction table has a unique 
identifier(tid) and is a subset of I, in which each item is 
associated with a count value. An itemset is a subset of I 
and is called a k-itemset if it contains k items. 
Definition 1. The external utility of item i, denoted as 

ext_u(i), is the utility value of i in the utility 
table of DB. 

Item A B C D E F G H 
Profit 5 2 1 2 3 5 1 1 
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Definition 2. The internal utility of item i in transaction T, 
denoted as int_u(i, T), is the count value 
associated with i in T in the transaction table of 
DB. 

Definition 3. The utility of item i in transaction T, denoted 
as u(i, T), is the product of int_u(i, T) and 
ext_u(i), where u(i, T) = int_u(i, T) × ext_u(i). 

For example, in Table 2 and 3, ext_u(e) = 3, 
int_u(e, T5) = 1, and u(e,T5)= int_u(e, T5) × 
ext_u(e) = 1 x 3 =3. 

Definition 4. The utility of itemset X in transaction T, 
denoted as u(X, T), is the sum of the utilities of 
all the items in X in T in which X is contained, 
where u(X, T) =   

Definition 5. The utility of itemset X, denoted as u(X),is the 
sum of the utilities of X in all the transactions 
containing X in DB, where u(X) = 

 

For example, in Table 2, u({ae}, T2) = u(a, T2) + 
u(e, T2)= 2 × 5 + 2 × 3 = 16, and u({ae}) = 
u({ae}, T2) + u({ae},T5) = 16 + 14 = 30. 

Definition 6. The utility of transaction T, denoted as tu(T), 
is the sum of the utilities of all the items in T, 
where  tu(T) = , and the total utility 

of DB is the sum of the utilities of all the 
transactions in DB. 

 
B. Related Work 
Many algorithms have been proposed for high utility 
itemset mining but all they first produce candidate itemset 
which require more time and space. Here in this algorithm a 
search space from the UP Growth algorithm [5] is 
minimized. A Utility information record structure is used 
instead of UP Tree.     

 
III. PROPOSED METHOD 

The framework of the proposed method consists of 
following steps: 1) Scan database to construct utility 
Information Record. 2) Apply EHUI mining algorithm. 3) 
Generate High Utility Itemsets.  
A. Utility Information Record Structure 
In the section, we propose a utility information record 
structure to maintain the utility information about a 
database. 
1) Initial Utility information record: Initial utility 

information record storing the utility information about 
a mined database can be constructed by two scans of 
the database. Firstly, the transaction-weighted utilities 
of all items are accumulated by a database scan. If the 
transaction-weighted utility of an item is less than a 
given minutil, the item is no longer considered. For the 
items whose transaction-weighted utilities exceed the 
minutil, they are sorted in transacion-weighted-utility-
ascending order.  

2) Utility information record of 2-Itemsets: No need for 
database scan, the utility information record of 2-
itemset{xy} can be constructed by the intersection of 
the utility list of {x} and that of {y}. The algorithm 
identifies common transactions by comparing the tids 

in the two utility information record. Suppose the 
lengths of the utility-lists are m and n respectively, and 
then (m + n) comparisons at most are enough for 
identifying common transactions, because all tids in a 
utility information record are ordered. The 
identification process is actually a 2-way comparison. 

3) Utility information record of k-Itemsets (k≥3): To 
construct the utility-list of k-itemset {i1 · · · 
i(k−1)ik}(k≥3), we can directly intersect the utility-list 
of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as we do 
to construct the utility-list of a 2-itemset. 

 
Algorithm 1: Build - Tree Generation Algorithm 
 
Input: P.UIR, the utility information record of itemset P; 
Px.UIR, the utility information record of itemset Px; 
Py.UIR, the utility information record of itemset Py. 
Output: Pxy.UIR, the utility information record of itemset 
Pxy. 
1. Pxy.UIR = NULL; 
2. for each element Ex ∈Px.UIR do 
3. if ∃Ey∈Py.UIR and Ex.tid==Ey.tid then 
4. if P.UIR is not empty then 
5. search such element E∈P.UIR that 

E.tid==Ex.tid; 
6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil, 

Ey.rutil>; 
7. Else 
8.  Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>; 
9. end if 

10. append Exy to Pxy.UIR; 
11. end if 
12.  end for 
13.  return Pxy.UIR; 

 
B. EHUIM Algorithm  
After constructing a Utility information record a EHUIM 
Algorithm can mine all high utility itemset from database. 
1)  Domain Space: The domain space of the high utility 

itemset mining problem can be represented as a 
combination tree. Given a set of items I = {i1, i2, i3, . . . 
in} and a total order on all items (suppose i1 < i2 < · · · 
< in), a combination tree representing all itemsets can 
be constructed as follows. 
Firstly, the root of the tree is created; secondly, then 
child nodes of the root representing n 1-itemsets are 
created, respectively; thirdly, for a node representing 
itemset{is · · · ie} (1 ≤ s ≤ e < n), the (n−e) child nodes 
of the node representing itemsets {is · · · iei(e+1) },{is · · 
· iei(e+2)}, ...,{is · · · iein} are created. The third step is 
done repeatedly until all leaf nodes are created. For 
example, given I = {e,c, b, a, d} and e < c < b < a < d, a 
combination tree representing all itemsets of I is 
depicted in Fig. 1. 

2) Pruning Strategy: For a database with n items, 
exhaustive search has to check 2n itemsets. To reduce 
the search space, we can exploit the iutils and rutils in 
the utility-list of an itemset. The sum of all the iutils in 
the utility-list of an itemset is the utility of the itemset 
according to Definition 5, and thus the itemset is high 
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utility if the sum exceeds a given minutil. The sum of 
all the iutils and rutils in the utility-list provides 
EHUIM Algorithm with the key information about 
whether the itemset should be pruned or not. 
Lemma 1. Given the utility information record of 
itemset X, if the sum of all the iutils and rutils in the 
utility information record is less than a given "minutil", 
any extension X' of X is not high utility. 

3)  EHUI Mining Algorithm: Algorithm 2 shows the 
pseudo-code of EHUIM Algorithm. For each utility 
information record X in ULs (the second parameter), if 
the sum of all the iutils in X exceeds minutil, and then 
the extension associated with X is high utility and 
outputted. According to Lemma 1, only when the sum 
of all the iutils and rutils in X exceeds minutil should it 
be processed further. When the initial utility-lists are 
constructed from a database, they are sorted and 
processed in transaction-weighted utility-ascending 
order. Therefore, all the utility information records in 
UIRs are ordered as the initial utility information 
record are. To explore the search space, the algorithm 
intersects X and each utility information record Y after 
X in UIRs. Suppose X is the utility-list of itemset Px 
and Y that of itemset Py, and then Build(P.UIR, X, Y ) 
in line 8 is to construct the utility-list of itemset Pxy as 
stated in Algorithm 1. Finally, the set of utility-lists of 
all the 1-extensions of itemset Px is recursively 
processed. Given a database and a minutil, after the 
initial utility information record IUIRs are constructed, 
EHUIM(∅, IUIRs, minutil) can mine all high utility 
itemsets. 

                                Φ 

    

    
            e                   c                   b                   a              d 

      ec    eb   ea     ed      cb     ca    cd           ba     bd        ad 

                                                                       

ecb  eca  ecd   eba    ebd   ead  cba  cbd    cad       bad 

ecba   ecbd      ecad      ebad                     cbad 

      ecbad       
Figure 1: Combination Tree 

Algorithm 2: EHUI Mining Algorithm 
 
Input: P.UIR, the utility-list of itemset P, initially empty; 
UIRs, the set of utility-lists of all P’s 1-extensions; 
minutil, the minimum utility threshold. 
Output: all the high utility itemsets with P as prefix. 
1. for each utility information record X in UIRs do 
2. if SUM(X.iutils)≥minutil then 
3. output the extension associated with X; 
4.  end if 
5. if SUM(X.iutils)+SUM(X.rutils)≥minutil 

then 
6. exULs = NULL; 
7. for each utility information record Y after X in UIRs do 
8.  exUIRs = exUIRs+Build(P.UIR, X, Y ); 
9. end for 

10. EHUI(X, exULs, minutil); 
11. end if 
12. end for 

IV. CONCLUSION 
In this paper, we have proposed a novel data structure, 
utility information record, and developed an efficient 
algorithm, EHUI, for high utility itemset mining. Utility 
information record provides not only utility information 
about itemsets but also important pruning information for 
EHUI. We have used Educational real time and standard 
datasets. Previous algorithms have to process a very large 
number of candidate itemsets during their mining processes. 
However, most candidate itemsets are not high utility and 
are discarded finally. EHUI Algorithm can mine high utility 
itemsets without candidate generation, so that complexity of 
UPGrowth and UPGrowth+ is reduced as it require less 
time and space, which avoids the costly generation and 
utility computation of candidates. However in future we can 
again reduce the complexity by reducing the joining cost of 
utility information record.    
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